Exploiting New Properties of String Net Frequency for Efficient Computation

Peaker Guo,Patrick Eades, Anthony Wirth,Justin Zobel

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Knowing which strings in a massive text are significant – that is, which strings are common and distinct from other strings – is valuable for several applications, including text compression and tokenization. Frequency in itself is not helpful for significance, because the commonest strings are the shortest strings. A compelling alternative is net frequency, which has the property that strings with positive net frequency are of maximal length. However, net frequency remains relatively unexplored, and there is no prior art showing how to compute it efficiently. We first introduce a characteristic of net frequency that simplifies the original definition. With this, we study strings with positive net frequency in Fibonacci words. We then use our characteristic and solve two key problems related to net frequency. First, single-nf, how to compute the net frequency of a given string of length m, in an input text of length n over an alphabet size σ. Second, all-nf, given length-n input text, how to report every string of positive net frequency. Our methods leverage suffix arrays, components of the Burrows-Wheeler transform, and solution to the coloured range listing problem. We show that, for both problems, our data structure has O(n) construction cost: with this structure, we solve single-nf in O(m + σ) time and all-nf in O(n) time. Experimentally, we find our method to be around 100 times faster than reasonable baselines for single-nf. For all-nf, our results show that, even with prior knowledge of the set of strings with positive net frequency, simply confirming that their net frequency is positive takes longer than with our purpose-designed method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要